

Application of External Voltage for the Release of Deposited Organic Foulant from PPy-Graphene Oxide and PPy-Molybdenum Disulfide Surfaces by NaCl Electrolysis

Iftaykhairul Alam¹, Linda Guiney², Mark Hersam², and Indranil Chowdhury¹

¹ Department of Civil & Environmental Engineering, Washington State University, Pullman, WA 99164, USA

² Department of Material Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, Illinois 60208, USA

Background

Biofouling, organic fouling and scaling hinder efficient membrane application.

Membrane fouling leads to

- Low permeability
- Low product water quality
- Short membrane life
- High maintenance cost
- Modification of polymeric membrane surfaces with nanomaterials

Background

- Large lateral size and ultrathin thickness of 2D nanomaterials offer high specific surface area.
- GO and MoS₂ have also shown antibacterial property
- The presence of functional groups in GO induces hydrophilicity
- Transition metal dichalcogenides including MoS₂ and WS₂ have extremely low friction, low surface roughness.

Background

Interaction Energy Profiles for BSA/SA in Na⁺ and GO/MoS₂

- GO and MoS₂ have large negative zeta potential
- High energy barrier between foulants and GO/MoS₂ calculated using DLVO theory

(Gregory 2005)(Hoek, Bhattacharjee et al. 2003)

Objective

- Overall objective: To develop antifouling surfaces using two dimensional GO and MoS₂ nanomaterials for environmental applications
- Specific objective: Application of External Voltage for the Release of Deposited BSA from PPy- GO and PPy- MoS₂ Surfaces by NaCl Electrolysis

Hypothesis

Generation of biocides

Formation of biocides (free Cl_2 , HOCI, H_2O_2 , OH) and bubble formation during potential application

 $Cl^{-} \rightarrow Cl_{2} + 2e^{-} (E^{\circ} = +740 \text{ mV}_{Ag/AgCl})$

 $Cl_2 + H_2O \rightarrow HOCI + H^+ + Cl^-$

 $H_2O \rightarrow O_2 + 4e^- + 4H^+ (E^\circ = +620 \text{ mV}_{Ag/AgCl})$

 $O_2 + 2H^+ + 2e^- = H_2O_2$ (E°= +85 mV _{Ag/AgCl})

 $H_2O_2 + e^- = OH + H_2O (E^\circ = +700 \text{ mV}_{Ag/AgCl})$

- Nanomaterials preparation
- □ Both the materials were prepared following the processes described in previous studies GO: Modified Hummer's method (KMnO₄)

MoS₂: Mixture of bulk MoS₂ and butyllithium, utrasonication

- Polymer used Electrochemical polymerization of Pyrrole : $N_H \xrightarrow{0.8 \vee} H$ Pyrrole to Polypyrrole (PPy)
- Foulant used

Bovine Serum Albumin (BSA) as protein foulant (M.W. 66 KDa, Sigma-Aldrich, St. Louis, MO)

Zeta Sizer Nano ZS (Malvern Instruments, Worcestershire, U.K.)

- Electrochemical Quartz crystal microbalance with dissipation monitoring (EQCM-D)
 - AC voltage pulsed across a quartz crystal causing it to oscillate in shear mode at its resonant frequency
 - A change in the mass of a film is directly proportional to a change in the resonant frequency of the crystal.

QCM-D

Potentiostat connected to QCM-D

Electro-

module

chemistry

Gold Sensor

Materials and Methods Deposition kinetics study using QCM-D

Initial deposition and release rate:

 $r_f = \left| \left(\frac{d\Delta f_{(3)}}{dt} \right)_{t \to 0} \right|$

Attachment efficiency:

$$\alpha_D = \frac{r_f}{(r_f) \text{bare polymer surface}}$$
$$= \frac{\left| \left(\frac{d\Delta f_{(3)}}{dt} \right)_{t \to 0} \right|}{\left| \left(\frac{d\Delta f_{(3)}}{dt} \right)_{faV, t \to 0} \right|}$$

Characterization of GO, MoS₂ and foulants:

Table: Zeta potential of materials and foulants under experimental condition

Sample name	рН	average zeta potential (mV)
GO in mili-Q water	4.51	-41.33±0.5
MoS ₂ in mili-Q water	4.32	-40.34±0.76
BSA in 10 mM NaCl	6.5	-37.97±12.27

Interaction of BSA with bare PPy, PPy-GO and PPy-MoS₂

Figure: Real time data of the BSA & SA deposition on GO & MoS_2 surface on QCM-D.

Results and discussion (Interaction of BSA with bare PPy, PPy-GO and PPy-MoS₂)

Figure: Maximum deposition (left) and attachment efficiency (right) of BSA on PPy, PPy-GO and PPy-MoS₂ surfaces without any potential.

Real time data of the BSA release from PPy-GO surface on QCM-D

Figure: Removal of BSA from PPy-GO surface by 1M NaCl electrolysis under +0.74V_{Ag/AgCl}.

Real time data of the BSA release from PPy-GO surface on QCM-D

Figure: Removal of BSA from PPy-GO surface by 0.5M NaCl electrolysis under +0.74V_{Ag/AgCl}.

A.

No release of BSA in presence of 0.1M NaCl from PPy-GO surface on QCM-D

Figure: No release of BSA (No change in frequency shift) from PPy-GO surface by 0.1 M NaCl electrolysis under $+0.74V_{Ag/AgCl}$.

Release of BSA from PPy, PPy-GO & PPy-MoS₂ surfaces by NaCI and external voltage

Figure: Release of BSA from PPy, PPy-GO and PPy-MoS₂ surfaces in presence of 1M NaCl (left) and 0.5M NaCl (right) under + $0.74V_{Ag/AgCl}$

Release of BSA from PPy, PPy-GO & PPy-MoS₂ surfaces by Synthetic Seawater (SSW)

Figure: Release of BSA from PPy, PPy-GO and PPy-MoS₂ surfaces in presence of SSW under $+0.74V_{Ag/AgCI}$. To compare with previous release rate, the NaCl concentration was kept 0.5M.

Real time data of the BSA release from PPy-GO surface on QCM-D

Figure: Removal of BSA from PPy-GO surface by SSW electrolysis under +0.74V_{Ag/AgCl}.

Generation of biocides by electrochemical reaction

Generation of bubbles and biocides
under +ve and –ve potential

 $H_2O \rightarrow O_2 + 4e^- + 4H^+ (E^\circ = +620 \text{ mV}_{Ag/AgCl})$

 $\text{CI}^{-} \rightarrow \text{CI}_2 + 2\text{e}^{-} (\text{E}^\circ\text{=} +740 \text{ mV}_{\text{Ag/AgCI}})$

 $Cl_2 + H_2O \rightarrow HOCI + H^+ + CI^-$

• Precipitation of solids during SSW electrolysis decrease the release performance:

 $Mg^{2+} + 2 OH^{-} \rightarrow Mg(OH)_{2} (s)$

 $Ca^{2+} + 2 OH^{-} \rightarrow Ca(OH)_2$ (s)

 CO_3^{2-} + Ca^{2+} \rightarrow $CaCO_3^{-}$ (s)

Figure: Generation of anodic current on material surfaces indicates the electrochemical reaction going on the working electrode when $+0.74V_{Ag/AgCl}$ was applied.

- □ Modification of polymer surface with GO and MoS₂ leads to less foulant attachment on the surface
- Electrochemical generation of free Cl₂, HOCI from seawater possible option for removing fouling layer
- External voltage to remove foulant layer during desalination
- The higher the NaCl concentration, the faster the foulants release
- Presence of different ions in seawater can decrease the release performance

Acknowledgements

Funding: WSU New Faculty Award (Chowdhury) National Science Foundation (Hersam)

Further Information:

indranil.chowdhury@wsu.edu Sustainable Material Applications and Reuse in Treatment (SMART) Water Environmental Lab http://public.wsu.edu/~indranil.chowdhury/

